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Abstract — This paper presents a new algorithm for the 

absolute angular position estimation in rotary applications, 
with real-time correction included. The algorithm is intended 
to be used in combination with sensors whose output is a 
sine/cosine function of an angle of rotation, which is the case 
with majority of sensors in rotary applications: Hall-effect 
sensors, resolver-type sensors, rotary capacitive/inductive 
sensors etc. Demanded hardware resources are minimized. 
On the other hand, the algorithm successfully utilizes 
increase in available hardware resources: additional memory 
locations, hardware multipliers, parallelism. Thus, it can be 
purposefully implemented on a wide range of the platforms, 
from the simplest ASIC calculation blocks, through all 
commercial microcontrollers and microprocessors, up to the 
FPGA chips and DSPs. 

Keywords — angular position estimation, limited hardware 
resources, real-time correction algorithm. 

I. INTRODUCTION 
N rotary applications determination of the angular 
position is an inevitable issue. Nowadays, systems in 

charge of that process generally consist of two sub-
systems: sensor part and signal processing part [1]. The 
quality of both sub-systems influences final accuracy. This 
paper contains a new model of the algorithm that is 
implemented in the signal processing part. The complete 
physical surrounding environment, where the algorithm 
would be implemented, is simulated in order to provide 
enough freedom for its characterization. 

II. CALIBRATION PROCEDURE 

A. Measurement setup 
The generalized measurement setup consists of four 

sensors that are placed at the angular displacements of π/2 
between each, on the measured rotating object. 

The calibration procedure is done in the laboratory 
conditions, which allows two setups: the calibrated 
measurement setup and the referent measurement setup 
[1]. The referent measurement setup is verified and its 
accuracy and precision are well determined. 

The referent measurement setup gives the output that is 
comprised of four variables with sinusoidal behavior. 
Since the accuracy and the precision of the measurements 
from the referent measurement setup are known, these 
curves are considered to be ideal referring to the calibrated 
measurement system, and can be described as: 
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On the other hand, the calibrated measurement system 
suffers from errors, which can be classified in two groups: 
a systematic error es and a random error er [2]. In practice, 
the systematic error of the measurement originates from 
the production imperfectness and the systematic error of 
the measurement instrument. The random error includes 
various causes. For the purpose of analyzing the 
calibration procedure the random error is split in two 
categories: measurement imprecision erm and a temporal 
variation in the sensor behaviour, erv. 

The analytical description of the taken measurements 
that come from the calibrated measurement system, and 
which are the inputs into the calibration procedure, is 
given as: 
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B. Calibration 
The aim of the calibration is to measure the difference 

between the measured and the ideal inputs and process the 
difference so that the parameters for the correction and 
angle calculation can be determined accurately to a 
feasible extent.  

The difference is to be fitted by a polynomial function. 
Since the correction algorithm is real-time, the arguments 
of the polynomial function can only be samples of the 
measurements.  

The calibration procedure consists of the following four 
steps that are taken in order to preprocess measurements 
so that polynomial coefficients can be more accurately 
estimated and to obtain polynomial coefficients for the 
correction: 

Pre-filtering. The redundancy of the simultaneous 
equations in (2) is used for removing the temporal 
variation of the sensor’s behaviour (erv). The temporal 
variation of the sensor’s behaviour is equal for the all 
curves in the equation (2). Thus, the first step is 
substituting opposite curves: 
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Scaling. It has been empirically proven in the research 
phase for this paper that the fitting polynomial can be 
more accurately determined if the offset and the amplitude 
of the measured curves from the Eq. (3) are roughly 
calculated and removed. The rough estimation of the offset 
is determined in the calibration phase and is simply 
calculated as a mean value of the curves given in (3).  

The rough estimation of the amplitude is given by the 
formula:  

t

where

]ˆ)([2ˆ

offse estimatedroughly  - Ô
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After this, we have scaled measurement curves, which 
are adapted for correction. 

42424242

31313131

24242424

13131313

ˆˆ

ˆˆ

ˆˆ

ˆˆ

AOcc

AOcc

AOcc

AOcc

ms

ms

ms

ms

−−=

−−=

−−=

−−=

  (5) 

Calculating domain of the fitting polynomials. The third 
step of preprocessing can be done by using the most linear 
segment as the argument of the fitting polynomial (x) in 
the particular region. This is allowed by the redundancy of 
the measurement system. The most linear region is 
determined by the algorithm in the Fig.1. 

 
Fig. 1.The algorithm for selecting the argument of the 

fitting polynomial 
 

Obtaining coefficients for the fitting polynomials. All 
curves from Eq. (5) are to be used as arguments of the 
fitting polynomial, depending on the angular position at 
which the fitting is done.  

The position is to be determined by the arctan function 
and only two curves from the system (5) need to be 
corrected. The chosen curves in this implementation are 

cs
13 and cs

24. Because of the transformation in the equation 
(3) it is obvious that choosing any other pair will give the 
same accuracy of the correction algorithm.  

Finally, Eq. (6) gives the differences that are to be fitted 
and the corresponding fitting polynomials. The argument x 
is used from a curve that is chosen by the algorithm 
depicted in Fig. 1. Accordingly, coefficients a and b are 
chosen, depending on the region (i represents the region of 
correction and takes values 1..4); n represent a degree of 
the fitting polynomial.  
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III. ALGORITHM FLOW 
After the measurement setup is calibrated in the 

laboratory conditions, it is used for the real-time angular 
position estimation. The algorithm for position estimation 
basically contains two parts: correction and angle 
calculation. The complete flow of the algorithm is 
depicted in Fig 2.  

 
Fig. 2.Complete flow of the algorithm  

 
The first three steps of the algorithm are done in the 

same way as in the calibration procedure. These steps are: 
pre-filtering, scaling and calculating domain for the fitting 
polynomials. The domain of the fitting polynomials 
determines which set of the polynomials is to be used. 
According to the domain, the corresponding coefficients 
are loaded from a non-versatile memory and the correction 
procedure is done. After correction, the angle calculation 
is done. The angle is calculated by the CORDIC algorithm 
[3, 4]. 
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IV. HARDWARE REQUIREMENTS 
The main advantage of the algorithm is the minimum 

required hardware resources for its implementation.  

A. Calculation requirements 
The algorithm can be executed with only two 

mathematical/logical operations: addition and bit shifting. 
Extreme simplicity makes it suitable for a very simple 
hardware where the power consumption and occupied 
space on a die (chip) are inevitable factors. 

On the other hand, the algorithm is not strictly predicted 
for simple hardware. It is adaptable and can take 
advantage of additional hardware performances. 

First, the hardware multiplier improves the speed of the 
algorithm in the correction phase. Second, the algorithm 
takes advantage of the hardware with parallelism in 
instructions executions (e.g. FPGA chips), which allows 
significant improvement of the speed in both correction 
and angle estimation phases. 

B. Memory requirements 
The memory resources could also be minimized in a 

case of the limitations. Provided additional memory 
locations the algorithm could easily utilize them in two 
ways. First, by increasing a degree of the fitting 
polynomial, which improves performances of the 
correction. Second, by increasing a number of CORDIC 
iterations, which directly improves accuracy of arctan 
calculations. These two ways are not independent and the 
correction and angle calculation phases need to be 
improved simultaneously.  

Table 1 summarizes overall memory resources for the 
algorithm. The required memory resources for scaling are 
four locations for placing roughly estimated mean values 
and amplitudes. Polynomial coefficients take locations 
according to theirs degree (n). Number of locations 
occupied by the CORDIC algorithm is equal to the number 
of iteration in the CORDIC.  

 
TABLE 1: MEMORY RESOURCES OF THE ALGORITHM. 

Resource Number of memory 
locations 

Scaling 4 
Polynomial coeffs (deg = n) 8*(n+1) 
CORDIC coeffs ( k iterations ) k 

TOTAL 8*(n+1)+k+4 

V. RESULTS 

A. Testbench description 
The inputs into the Algorithm are mathematically 

described by Eq. (2).  
The systematic error es is a periodical function of the 

angular position, and can be described as a Fourier series 
[5], with the angular position θ as an argument:  
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The random error er  has Gaussian distribution, with 
standard deviation σ. 

B. Correction example 
In this example measurements are generated with the 

following values (referring to the Eqs. (2) and (7)): 
The measurement amplitudes are A1=A2=A3=A4=1. 

These amplitudes are chosen equal without loss of 
generality, because the Algorithm always completely 
suppresses the amplitude differences. 

The systematic error is represented as a Fourier series 
with five terms, i.e. in the Eq. (7) k takes natural number 
values from the set [1,5]. The randomly chosen values are 
given in the Table2. 

 
TABLE 2: PARAMETERS OF THE SYSTEMATIC ERROR. 

 AF1 
BF1

AF2 
BF2

AF3 
BF3

AF4 
BF4

AF5 
BF5

e1s 0.11 
0.10 

0.20 
0.11 

0.13 
0.13 

0.00 
0.06 

0.03 
0.03 

e2s 0.10 
0.10 

0.19 
0.19 

0.07 
0.13 

0.09 
0.04 

0.03 
0.04 

e3s 0.50 
0.13 

0.10 
0.17 

0.17 
0.00 

0.04 
0.07 

0.00 
0.01 

e4s
0.13 
0.00 

0.00 
0.13 

0.10 
0.10 

0.01 
0.03 

0.01 
0.01 

 
The random error er has the following parameters: 

σ=0.05. Standard deviation is 5% of the measurement 
amplitudes.  

The generated measurements are drawn in Fig. 3, where 
x axis represents the angular position of the system, while 
c1M..c4M represent the curves from Eq.(2), respectively. 
They are given in relative units. Even without performing 
any quantitative analysis, it is obvious the measurements 
are significantly deformed and useless for direct 
estimating the position.  
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Fig. 3. Simulation of the measurements  

 
In this case the correction is done with third degree 

polynomials. 
The corrected curves are depicted in Fig. 4, where 

c1c..c4c represent corrected representation of the 
c1M..c4M, respectively. 
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Fig. 4. Example of corrected curves, third degree 

correcting polynomial 
 

After correction, the angle is calculated by using 
CORDIC algorithm. In this case, the number of iterations 
in CORDIC is 16. Comparison of the error in the case of 
not using the algorithm with the case when the algorithm 
is used is depicted in Fig. 5. The error is given in degrees.  
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Fig. 5. Error of the position estimation, 16-iteration 

CORDIC 
Table 3 gives comparison of some parameters that 

characterize the angular position estimation error. RMS(e) 
stands for the root mean square error on the one-period 
interval, Max (ABS(e)) is the absolute maximum of the 
error, Mean(e) is the mean value of the error. All values 
are rounded to two decimal places, thus the mean value in 
the case with correction is zero. 
 

TABLE 3: CHARACTERISTIC OF THE ERROR IN A PARTICULAR 
IMPLEMENTATION. 

 RMS(e) Max(ABS(e)) Mean(e) 
Error without 
correction [deg] 9.01 16.7 7.18 

Error with 
correction [deg] 0.76 3.21 0.00 

 
Table 4 gives the occupied memory resources for a 

particular implementation of the algorithm. It can be seen 
that only 52 locations are enough to support the algorithm. 
The simplest hardware platform on which this 
implementation can be executed consists of an 
accumulator, two temporal registers, adder, a shifter and 
52 non-volatile register for storing parameters [6].  

 
TABLE 4: MEMORY RESOURCES FOR A PARTICULAR 

IMPLEMENTATION. 

Resource Number of memory 
locations 

Scaling 4 
Polynomial coeff. (deg = 3) 32 
CORDIC coeff. ( 16 iterations ) 16 

TOTAL 52 

VI. NEXT STEPS 
The current version of the algorithm is to be further 

characterized and accordingly improved. Moreover, the 
algorithm is planned to be implemented across various 
hardware platforms in order to verify its behaviour and 
find an optimum hardware for a particular desired 
performances. Also, the inputs from various types of 
sensors are going to be analyzed in order to adjust the 
correction procedure to some specific cases of the 
measurement error behaviour. 
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